A

W

FOR FASTER, BETTER AND M

SHIF T LEET e

Google

continuous | Q

continuous improvement
continuous integration

continuous delivery

continuous improvement manager
continuous vertaling

continuous learning

continuous ping

continuous tense

continuous variable E g w‘{;;t . CONtinuous Integration
continuous assessment Pipeline P.rl.'J1r-'n:- Lls.ﬂ'ﬂmeptameTﬂt e ubVERSHON

Continuous Delivery

Contirilious Depluyment
Apgg.lenhms it donitoning umrnrt Stage
Git Maven

8 Cprairace

h.'TIIIJI'I'I Blus-LEneen |.-'|.|.|¢'|'II|E‘"|: Firnih | %tmr"atlun

1‘?

2

-

&
A

DEVOPS T

......
......
..........
...........
..............
...................
.....................
00000000000
..........
..............
L
.....

..........
..........
..........
..........
..........
.........
..........
.........
..........
.........

ek,

. Gy

g

PR e

Y

" g e

Relative cost to fix error

1000

100

| |
Larger software projects
g I IBM-SSD

OI GTE

80%
{ Median (T RW survey)
20%

o0—o
o

—
ﬂ///
, o
A

SAFEGUARD

| | |

(I

Smaller software projects

[] — [Boehm, 1980]

| |

Requirements Design Code

Development Acceptance Operation

test test

Phase in which error was detected and corrected

Software
Inspection

Tom Gilb

Dorothy Graham

WITHOUT

INSPECTIONS
W 4
ADDBON-WESLEY
p WITH P
- I s Z_INSPECTION
o I 29" o
p—— o | - ~
o - 1 7 ~
4 &= 1 // N
i
<27 o ! / \
L o | /
& = 9 / \
[! \
LaJ a
(& o) \
; Vi !
- - 'DE SIGN={CODING}= TESTING

SCHEDUL E —

SHIFT LEFT

ONLY

WHY ?

e /1% of projects fail due to requirements
standish Group CHADS Report

e /% of defects are made before coding starts

Lauesen & Vinter - Preventing Requirements Defects

e Working doftware over Comprehensive Documentation

Agile Manitesto g |
v Raqu\mm&n’r%
g N

v g o : l‘.
AR~ T

'2‘ H) A !

e %’:" ¥ 12 ¥
'ﬁ.‘?wﬁ;}--f .

SHIFT LEFT

ONLY

3 TYPES

IVNUILIOVRIL

VVVVVV

IVINANALIN

(48Va- 1340

SHIFT LEFT

ONLY

3 FLAVOURS

Developer Testing User Testing

100 ATDD
ifll?

UNIT TESTINI
TEST HIRST APPRUAGH

DD

UNTIL PROVEN INNOCENT T
UBJECTIVE: HIGH QUALITY CODE

Single iterations of a few minutes, in steps:

DEV considers the change up hand
DEV identifies the smallest change

DEV writes a (failing) unit test

Describing and identifying an example of the code
behavior needed for the change

DEV writes the code

DEV runs the unit test to verify the change
DEV refactors

DEV improves the design

1. Write a test
that fails

3. Eliminate
redundancy

REFACTOR

2. Make the
code work

The mantra of Test-Driven Development (TDD) is “red, green, refactor”

All unit tests automated before coding starts
Immediate feedback

Refactored code

Legacy code
Large bodies of Unit Tests

We have build the thing right

ATDD

DEV METHODOLOGY
e Top e
2 | i / ACCEPTANGE TESTING
SPECIFICATION BY EXAMPLE
COLLABORATIVE WORKSHOPS

BUILD THE

RIGHT

All acceptance tests ready before coding starts
Automation not required

Frameworks

Doesn't embrace change

Duplicate automation (UT & AT)

’\ DEV METHODOLOGY
BDD
S/ s STORIES & SCENARIDS
DOMAIN SPECIFIC LANGUAGE
CUSTOMER CENTRIC APPROACH

* Feature <title> e Description of the Feature

e AS A<role> o Stakeholder and/or user role
e | WANT <action> e Action to be undertaken
e SO THAT <business value> e Business value provided (rationale)
 Scenario <title> e Description of the Scenario
e GIVEN <context> * Preconditions
. AND <more context>
* WHEN <action> * Actions
. AND <other action>
e THEN <outcome> * Expected outcomes

. AND <more outcomes>

Learning curve

Change documentation style

SHIFT LEFT

ONLY

SUMMARY

FM?

« [DD: by developers ATDD & BDD support collaboration
ATDD & BDD : by users
« [= Development
 [DD & BDD require automation Automated tests are NOT the goal
ATDD: automation optional
 [OAL push defect curve to the [eft
 [DD not prioritized
ATDD & BDD: priority by user

